1a ### Selecting a strain gage based on operating temperatures and other measuring conditions | | Micro-strain
measurement
(semiconductor gages) | Measurement at high temperatures | Measure-
ment at
low temp. | Large strain
measurement | For magneto-
resistance | Measurement under other conditions | °F | |----------------------|--|---|-------------------------------------|---|---|--|------| | | | Measurement in a temperature range of -196 to 950°C | | | | | 1832 | | | | KHCX Measurement in a temperature range of room temperature to 800°C | | | | | 1652 | | | | KHCD | | | | | 1472 | | | | Measurement in a temperature range of –196 to 750°C KHCS | | | | | 1292 | | | | Measurement in a temperature range of –196 to 650°C | | | | | 1112 | | | | Measurement in a temperature range of –196 to 550°C | | | | | 932 | | | | Measurement in a temperature range of –196 to 350°C | | | | | 752 | | | | Measurement in a temperature range of -50 to 350°C | | | | | 572 | | | | Measurement in a temperature range of -196 to 250°C | | | | | 392 | | l | KSP
KSN
KSPL KSPH | KFH | | KLM KFEL | | | 212 | | | | | | KDW KIEL | | KFF KCH KMP KV | 32 | | of
10
ur
of | leasurement Impact-initiated strain opportunities than opportunities than opportunities assurement with no amplifier amplifier | | KFL | Elongation Elongation measurement up to approx. 20% | KFN KFS | In the case where any gage cannot be bonded inside the structure Simplified waterproof treatment and arrangedness where any gage cannot be bonded inside the structure KTB Internal strain measurement of resin | -148 | | | | | Measurement
at down to
-269°C | | Measurement under AC under high electric field generating inductive noise | Temperature Measurement of progress and propagation velocity of crack | | | | | | | | | | -508 | Note: Stated above are operating temperatues. # Selecting a strain gage based on operating environment and purpose | | Name/ceri | es designation | Mate | rials | Operating temperature ranges in combination | Self-
temperature- | Applicable linear expansion | at room temp., | Fatigue life
at room temp., | Page | |--------------------------------------|---|---|------------------------|------------------------------|--|-------------------------|--|------------------|--------------------------------|------| | | Name/seri | es designation | Resistive element | Base | with major adhesives
after curing*1 (°C) | compensation range (°C) | coefficient
(x10 ⁻⁶ /°C) | approx.*2
(%) | approx.*3
(times) | lugo | | | | For general purpose | | | CC-33A: -196 to 120
EP-34B: -55 to 150
PC-6: -196 to 150 | 10 to 100 | 5, 11, 16,
23, 27 | 5.0 | 1.2 x 10 ⁷ | P3 | | | | For sensing element of transducers | | | PC-6: -196 to 150
EP-34B: -55 to 150 | 10 to 100 | 11, 16, 23,
27 | 5.0 | 1.2 x 10 ⁷ | P5 | | | General-purpose
foil strain gages | For concrete | CuNi alloy foil | Polyimide | CC-35: -30 to120
PC-12: -196 to 150 | 10 to 100 | 11 | 5.0 | 1.2 x 10 ⁷ | P8 | | | KFG | Concentrated stress measurement | Culvi alloy loli | i diyiiilide | CC-33A: -196 to 120
EP-34B: -55 to 150
<u>PC-6</u> : -196 to 150 | 10 to 100 | 11, 16, 23,
27 | _ | _ | P5 | | Ħ | | Residual stress
measurement | | | CC-33A: -196 to 120
EP-34B: -55 to 150
PC-6: -196 to 150 | 10 to 100 | 11, 16, 23,
27 | _ | | P | | ssureme | | Bolt axial tension measurement | | | EP-18: Room temp. to 50 EP-34B: Room temp. to 50 | 10 to 100 | 11 | _ | _ | P7 | | For general stress measurement | Foil strain gages w
KFGT | ith temperature sensor | CuNi alloy foil | Polyimide | CC-33A: -10 to 120
EP-34B: -10 to 120
PC-6: -10 to 120 | 10 to 100 | 11, 16, 23 | 3 | 1 x 10 ⁶ | P7 | | | Foil strain gages | Strain measurement
at middle tempera-
tures; for transducers | NiCr alloy foil | Polyimide | PC-6: -196 to 150
CC-33A: -196 to 120
EP-34B: -55 to 150 | 0 to 150 | 11, 16, 23 | 2.2 | 1 x 10 ⁶ | P7 | | For gen | KFR | Concentrated stress
measurement | Two talloy for | 1 diyiiiildo | PC-6: -196 to 150
CC-33A: -196 to 120
EP-34B: -55 to 150 | 0 to 150 | 11, 16, 23 | _ | _ | P7 | | | Waterproof foil strain gages KFW | | CuNi alloy foil | Paper base +
phenol-epoxy | <u>CC-33A</u> : –10 to 80
EP-18: –10 to 80 | 10 to 80 | 11, 16, 23 | 2.8 | 3 x 10 ⁴ | P8 | | | Small-sized waterproof strain gages KFWS | | CuNi alloy foil | Polyimide | CC-33A: -10 to 80
EP-18: -10 to 80 | 10 to 80 | 11, 16, 23 | 5.0 | 3 x 10⁴ | P8 | | | Weldable waterproof strain gages KCW | | NiCr alloy foil | Stainless steel | (Spot welding)
-20 to 100 | 10 to 90 | 11 | 0.5 | 1 x 10 ^{6 *A} | P8 | | | Wire strain gages KC | | CuNi alloy foil | Paper base +
phenol-epoxy | PC-12: -196 to 150
CC-35: -30 to 120 | 10 to 60 | 11 | 1.8 | 1.5 x 10⁵ | P | | | Embeddable strain gages KM | | CuNi alloy | Acrylate | (Embedment)
-10 to 70 | 0 to 50 | 11 | 0.3 | _ | P | | | Embeddable strair
KMC | n gages for concrete | CuNi alloy wire | Silicone | (Embedment)
Room temp. to 70 | _ | _ | 0.3 | | P | | ,
B | Foil strain gages fo | or composite materials | NiCr alloy foil | Polyimide | EP-34B: -55 to 200
CC-33A: -196 to 120 | 0 to 150 | 1, 3, 6, 9 | 2.2 | 1 x 10 ⁶ | P | | d rubber | Strain gages for p | rinted boards | NiCr alloy foil | Polyimide | CC-33A: -196 to 120
PC-6: -196 to 150 | -30 to 120 | 13 | 1.6 | 2 x 10 ⁶ | PS | | plastics and | Foil strain gages fo | | CuNi alloy foil | Paper base +
phenol-epoxy | EP-34B: -20 to 80
CC-33A: -20 to 80 | 10 to 80 | 65 | 3.0 | 1 x 10 ⁶ | P1 | | plast | Foil strain gages for low-elasticity mate
KFML | | CuNi alloy foil | Phenol-epoxy | EC-30: 0 to 60
CC-33A: 0 to 60 | _ | _ | 1.0 | _ | P1 | | nent | | Micro-strain
measurement | P type Si | Paper base +
phenol-epoxy | PC-12: -50 to 150
CC-33A: -50 to 120 | _ | _ | 0.3 | 2 x 10 ^{6 * A} | P1 | | For infinitesimal strain measurement | Semiconductor
strain gages
KSP | For sening element of highly sensitive transducers | P type Si | Paper base +
phenol-epoxy | PC-12: -50 to 150
CC-33A: -50 to 120 | _ | _ | 0.3 | 2 x 10 ^{6 * A} | P1 | | train me | | Micro-strain meas; 2-
element, temperature-
compensation type | P type Si
N type Si | Paper base +
phenol-epoxy | PC-12: -50 to 150
CC-33A: -50 to 120 | 20 to 70 | 11 | 0.3 | 2 x 10 ^{6 * A} | P1 | | simal s | Self-temperature-o
semiconductor str
KSN | | N type Si | Paper base +
phenol-epoxy | PC-12: -50 to 150
CC-33A: -50 to 120
EP-17: -50 to 120(E5) | 20 to 70 | 11, 16 | 0.3 | 2 x 10 ^{6 * A} | P1 | | r infinite | High-output semio | conductor strain gages | P type Si | Paper base +
phenol-epoxy | PC-12: -50 to 150
CC-33A: -50 to 120 | _ | _ | 0.3 | 2 x 10 ^{6 * A} | P1 | | For | Ultralinear semico | Ultralinear semiconductor strain gages KSPL | | Paper base +
phenol-epoxy | PC-12: -50 to 150
CC-33A: -50 to 120 | | _ | 0.3 | 2 x 10 ^{6 * A} | P1 | ^{*1.} Underlined adhesives are those used for strain limit tests at room temperature and for fatigue tests at room temperature. *2. Typical values with uniaxial gages. Strain limit is the mechanical limit where a difference between the strain reading and mechanical strain initiated by applying tension load exceeds 10% ^{*3.} Typical values with uniaxial gages. Strain level: $\pm 1500~\mu\epsilon$; *A: $\pm 1000~\mu\epsilon$; *B: $\pm 500~\mu\epsilon$, *C: $\pm 100~\mu\epsilon$ | | Name (series designation | Mate | erials | Operating temperature ranges in combination | Self-
temperature- | Applicable linear
expansion | at room temp | Fatigue life at room temp., | Dogo | |--------------|--|--|-------------------------|---|-------------------------|--|------------------------------|---------------------------------|------| | | Name/series designation | Resistive element | Base | with major adhesives
after curing*1 (°C) | compensation range (°C) | coefficient
(x10 ⁻⁶ /°C) | approx.* ²
(%) | approx.*3
(times) | Page | | | Encapsulated strain gages KHCX | Heat-resistant special alloy wire | Heat-resistant
metal | (Spot welding)
-196 to 950 | 25 to 950 | 11, 13 | 1.0
(950°C) | 1 x 10 ^{6*C} (950°C) | P1 | | | Encapsulated strain gages KHCD | Heat-resistant
special alloy
wire | Heat-resistant
metal | (Spot welding)
Room temp. to 800 | _ | _ | 1.0
(800°C) | 1 x 10 ^{6*B} (800°C) | P1 | | | Encapsulated strain gages KHCS | Heat-resistant
special alloy
wire | Heat-resistant
metal | (Spot welding)
-196 to 750 | 25 to 750 | 11, 13, 16 | 1.0
(750°C) | 1 x 10 ^{6*B} (750°C) | P1 | | allolis | Encapsulated strain gages KHCM | Heat-resistant
special alloy
wire | Heat-resistant
metal | (Spot welding)
-196 to 650 | 25 to 650 | 11, 13, 16 | 1.0
(650°C) | 1 x 10 ^{6*B} (650°C) | P1 | | | Encapsulated strain gages KHC 20 type | | | | | | 0.8 | 4 x 10 ^{5*A} | | | | Encapsulated strain gages KHC 10 type | NiCr alloy wire | Heat-resistant
metal | (Spot welding)
-196 to 550 | Room temp.
to 500 | 11, 16 | 0.5 | 4 x 10 ^{5*A} | P1 | | | Encapsulated strain gages KHC 5 type | | | | | | 0.5 | 2 x 10 ^{5*A} | | | | High-temperature foil strain gages KFU | NiCr alloy foil | Polyimide | PI-32: -196 to 300 | 10 to 300 | 11, 16, 23 | 1.9 | 1.5 x 10 ^{5*A} (300°C) | P1 | | | High-temperature foil strain gages KH-G4 | NiCr alloy foil | Stainless steel | (Spot welding)
-50 to 350 | 10 to 300 | 11, 16 | 0.5 | 1 x 10 ^{7*B} | P1 | | | High-temperature foil strain gages
KFH | NiCr alloy foil | Polyimide | PC-6: -196 to 250
EP-34B: -55 to 200
PI-32: -196 to 250 | 10 to 250 | 11, 16, 23 | 2.1 | 2 x 10 ⁵ | P1 | | remp. | Low-temperature foil strain gages KFL | NiCr alloy foil | Polyimide | PC-6: -269 to 150
CC-33A: -196 to 120
UC-26: -196 to 50 | -196 to 50 | 5, 11, 16,
23 | 2.2 | 1 x 10 ⁶ | P1 | | ament | Ultrahigh-elongation wire strain gages KLM | CuNi alloy wire | Ероху | EC-30: 0 to 60
CC-36: -10 to 80 | _ | _ | 20 | 1 x 10 ⁶ | P1 | | measurement | High-elongation foil strain gages
KFEL | CuNi alloy foil | Polyimide | <u>CC-36</u> : –10 to 80 | _ | _ | 15 | 1 x 10 ⁶ | P1 | | 215 | Noninductive foil strain gages
KFN | NiCr alloy foil | Polyimide | PC-6: -196 to 150
CC-33A: -196 to 120 | 0 to 150 | 11, 16, 23 | 1 | 1 x 10 ⁴ | P1 | | applications | Shielded foil strain gages
KFS | CuNi alloy foil
(120Ω)
NiCr alloy foil
(350Ω) | Copper foil | PC-6: -196 to 150
CC-33A: -196 to 120
EP-34B: -55 to 150 | 10 to 100 | 11, 16 | 0.5 | 1 x 10 ⁴ | P1 | | strain | Foil strain gages for bending strain measurement KFF | | | CC-33A: -50 to 80
EP-18: -50 to 80
EP-34B: -50 to 80 | 20 to 60 | 11, 16, 23 | 0.2 | 4 x 10 ^{6*B} | P1: | | protector | Foil strain gages with protector KCH | CuNi alloy foil | Polyimide | Protector: Stud bolt
Strain gage
EP-34B, CC-33A:
-40 to100 | _ | 11 | 1 | 1.2 x 10 ^{6*A} | P1: | Notes ^{*1.} Underlined adhesives are those used for strain limit tests at room temperature and for fatigue tests at room temperature. *2. Typical values with uniaxial gages. Strain limit is the mechanical limit where a difference between the strain reading and mechanical strain initiated by applying tension load exceeds 10% *3. Typical values with uniaxial gages. Strain level: ±1500 με; *A: ±1000 με; *B: ±500 με, *C: ±100 με ## Selecting the type and the length of a leadwire cable for the gage selected in 1a and 1b Virtually all KYOWA strain gages are delivered with a leadwire cable pre-attached to ensure labor saving in gage bonding works by eliminating the need for soldering. Types and lengths of the leadwire cable selectable for each gage are as follows. | Mod | olicable
del of
ain Gage | | R, KFRP,
L, KFEL | KFG, KFR, KFW, KFWS, KC,
KFRP, KFP, KLM, KFEL | | | | | | |------------------------------|--------------------------------|---------------------------------|---------------------------------|--|----------------|--------------------------------|-------------------|--|--| | Type of
Leadwire
Cable | | 2 polyester-coated copper wires | 3 polyester-coated copper wires | Vinyl-coated fla | | Vinyl-coated flat 3-wire cable | | | | | | | | | Uniaxial | Multiaxial | Uniaxial | Multiaxial | | | | | 2 cm | N2C2 | N2C3 | | | | | | | | | 3 | N3C2 | N3C3 | | | | | | | | | 4 | N4C2 | N4C3 | | | | | | | | | 5 | N5C2 | N5C3 | | | | | | | | | 10 | N10C2 | N10C3 | | | | | | | | <u>e</u> | 15 | N15C2 | N15C3 | L15C2R | L15C2S | L15C3R | L15C3S | | | | Cak | 30 | N30C2 | N30C3 | L30C2R | L30C2S | L30C3R | L30C3S | | | | Length of Leadwire Cable | 50 cm | N50C2 | N50C3 | L50C2R | L50C2S | L50C3R | L50C3S | | | | Lea | 1 m | N1M2 | N1M3 | L1M2R | L1M2S | L1M3R | L1M3S | | | | th of | 2 | | | L2M2R | L2M2S | L2M3R | L2M3S | | | | Leng | 3 | | | L3M2R | L3M2S | L3M3R | L3M3S | | | | | 4 | | | L4M2R | L4M2S | L4M3R | L4M3S | | | | | 5 | | | L5M2R | L5M2S | L5M3R | L5M3S | | | | | 6 | | | L6M2R | L6M2S | L6M3R | L6M3S | | | | | 8 | | | L8M2R | L8M2S | L8M3R | L8M3S | | | | | 10 | | | L10M2R | L10M2S | L10M3R | L10M3S | | | | | 15 | | | L15M2R | L15M2S | L15M3R | L15M3S | | | | | 20 | | | L20M2R | L20M2S | L20M3R | L20M3S | | | | | 30 m | | | L30M2R | L30M2S | L30M3R | L30M3S | | | | Mod | lel, etc. | Twisted in the cases | of 50cm and 1m long | L-6; L-9 for 6n | n long or more | L-7; L-10 for (| 6m long or more | | | | Coat | ting colors | | | a 1111 | Red
Red | | (independent wire | | | The length can freely be adjusted by pulling it as shown. When order, specify the model of the strain gage and the code of the leadwire cable with a space in between. Model of Strain Gage Code of Leadwire Cable KFG-2-120-C1-11 L1M3R | KFG, KFR, | KFRP, KFL | KFN, KFS | KFRP, KFH,
KFL, KTB | KFU, KFH | | | |---------------------------------|---------------------------------|-------------------------------------|--|----------------------------------|--|--| | Middle-temperature 2-wire cable | Middle-temperature 3-wire cable | Vinyl-coated low-noise 3-wire cable | Fluoroplastic-coated high/low-temperature 3-wire cable | High-temperature 3-wire cable | Glass-coated cable of 3 Ni-clad copper wires | | | | | | | | | | | | | | | | | | | R15C2 | R15C3 | J15C3 | F15C3 | H15C3 | B15C3 | | | R30C2 | R30C3 | J30C3 | F30C3 | H30C3 | B30C3 | | | R50C2 | R50C3 | J50C3 | F50C3 | H50C3 | B50C3 | | | R1M2 | R1M3 | J1M3 | F1M3 | H1M3 | B1M3 | | | R2M2 | R2M3 | J2M3 | F2M3 | H2M3 | B2M3 | | | R3M2 | R3M3 | J3M3 | F3M3 | НЗМЗ | ВЗМЗ | | | R4M2 | R4M3 | J4M3 | F4M3 | H4M3 | B4M3 | | | R5M2 | R5M3 | J5M3 | F5M3 | H5M3 | B5M3 | | | R6M2 | R6M3 | J6M3 | F6M3 | H6M3 | В6М3 | | | R8M2 | R8M3 | J8M3 | F8M3 | H8M3 | B8M3 | | | R10M2 | R10M3 | J10M3 | F10M3 | H10M3 | B10M3 | | | R15M2 | R15M3 | J15M3 | F15M3 | H15M3 | B15M3 | | | R20M2 | R20M3 | J20M3 | F20M3 | H20M3 | B20M3 | | | R30M2 | R30M3 | J30M3 | F30M3 | H30M3 | B30M3 | | | L-11 | L-12 | L-13 | L-3 | L-17 | | | | Grey Grey | Red (independent) White Black | Red (independent) White Black | Red (independent) Blue Blue | Black (independent) Yellow Green | Red (independent) Blue White | | For KCW, KM, KH and KFRS, refer to Pages 86, 92, 126 and 99, respectively. To select the leadwire cable separately, see Page 26. # Selecting a leadwire cable based on operating temperature range and connection examples #### L-type Leadwire Cables | Operating
Temperature
Range | Model | Туре | Conductor
Material | Nominal
Cross
Section of
Conductor
(mm²) | Number of
Strands/
Wire Diam.
(mm) | Reciprocating
Resistance
per meter
(Ω) | Coated
Wire
Diameter
(mm) | Unit
Length | |-----------------------------------|--------|--|----------------------------|--|---|---|------------------------------------|----------------| | Room temp.
to 350 | L-1 | High-temperature leadwire | CuNi alloy
wires | 0.07 | 1/0.30 | 14.20 | 0.50 | 50m | | -10 to 80 | L-2 | Vinyl-coated flat 3-wire cable | Copper wires | 0.30 | 12/0.18 | 0.12 | 2.30 | 100m | | -269 to 250 | L-3 | Fluoroplastic-coated high/low-temp. 3-wire cable | Silver-plated copper wires | 0.14 | 7/0.16 | 0.28 | 0.98 | 50m | | Room temp.
to 350 | L-4 | High-temperature leadwire | Nickel-clad copper wires | 0.20 | 1/0.50 | 0.18 | 0.70 | 30m | | -10 to 80 | L-5 | Vinyl-coated flat 2-wire cable | Copper wires | 0.50 | 20/0.18 | 0.07 | 2.50 | 100m | | -10 to 80 | L-6*1 | Vinyl-coated flat 2-wire cable | Copper wires | 0.08 | 7/0.12 | 0.44 | 1.00 | 100m | | -10 to 80 | L-7*2 | Vinyl-coated flat 3-wire cable | Copper wires | 0.08 | 7/0.12 | 0.44 | 1.00 | 100m | | -10 to 80 | L-9*1 | Vinyl-coated flat 2-wire cable | Copper wires | 0.11 | 10/0.12 | 0.32 | 1.00 | 100m | | -10 to 80 | L-10*2 | Vinyl-coated flat 3-wire cable | Copper wires | 0.11 | 10/0.12 | 0.32 | 1.00 | 100m | | -100 to 150 | L-11 | Middle-temperature 2-wire cable | Silver-plated copper wires | 0.08 | 7/0.12 | 0.50 | 0.86 | 100m | | -100 to 150 | L-12 | Middle-temperature 3-wire cable | Silver-plated copper wires | 0.08 | 7/0.12 | 0.50 | 0.86 | 100m | | -10 to 80 | L-13 | Vinyl-coated normal-temp. low-noise 3-wire cable | Tin-plated copper wires | 0.09 | 7/0.13 | 0.46 | 3.50 | 100m | | -50 to 90 | L-14 | Chloroprene-coated normal-temp. low-noise 4-wire cable | Tin-plated copper wires | 0.08 | 7/0.12 | 0.48 | 4.00 | 100m | | -269 to 250 | L-15 | Fluoroplastic-coated high/low-temp. low-noise 3-wire cable | Silver-plated copper wires | 0.08 | 7/0.12 | 0.48 | 2.50 | 10m | | -269 to 250 | L-16 | Fluoroplastic-coated high/low-temp. low-noise 4-wire cable | Silver-plated copper wires | 0.08 | 7/0.12 | 0.48 | 3.30 | 10m | | -269 to 350 | L-17 | High/low-temperature 3-wire cable | Nickel-plated copper wires | 0.07 | 1/0.30 | 0.50 | 0.38 | 30m | ^{*1.} These models have a suffix R, W, G, Y or B indicating the coating color; red, white, green, yellow or black. e.g. L-6B: Black vinyl coated. *2. These models have a suffix WR, WL or WY indicating the stripe color; red, blue or yellow on white vinyl coating. e.g. L-7WR: Red stripe on white coating. | Cable
Type | 2-wire System | 3-wire System | |---------------|---------------|--| | C1 | Red | Red stripe Red stripe Depending on the gage length, gage leads are arranged in either of 2 different ways. (The same applies to D16 and D17.) | ### Selecting adhesive and bonding tools To obtain good measurement results, the strain gage must be bonded completely to the measuring object. Thus, it is important to select a suitable adhesive for the materials of the measuring object and gage base and for measuring conditions. | Applicable Gages | Model | Features | Curing Requirements
100kPa = Approx. 1kgf/cm ² | Operating
Temperature
Range (°C) | Ingredient | Content
(g) | |---|--------|---|--|--|----------------------------------|--| | KFG KFGT KFR KFW KFWS KFRP KFRS KFP KFML KSP KSN (excl. E5) KSPH KSPL KFL KFN KFS KFF KCH KV KTB | CC-33A | High-speed cold setting,
enabling measurement 1 hour
after bonding with finger
pressure.
Suitable for strain measurement
of metal, plastics and composite
materials under normal room
temperature. | Apply finger pressure (100 to 300kPa) for 15 to 60 seconds. Then, leave the gage as it is for 1 hour or more at normal temperatures. The finger pressure application time depends on temperature and humidity conditions. Lower the temperature and humidity results and humidity, the longer the finger pressure application time required. | -196 to 120 | Cyano-
acrylate,
1 liquid | 2g x1
or
2g x5 | | KFG KFGT KFR
KC KFRP KFP | CC-35 | High-speed cold setting.
Suitable for porous materials
such as lumber, concrete and
composite materials. | Apply finger pressure (100 to 300kPa) for 30 to 60 seconds. Then, leave the gage as it is for 1 hour or more at normal temperatures. The finger | -30 to 120 | Cyano-
acrylate,
1 liquid | 2g x1
or
2g x5 | | KLM KFEL | CC-36 | For high-elongation strain gages.
Instantaneous bonding at room
temperature and less aging
change. | pressure application time
depends on temperature and
humidity conditions. Lower the
temperature, the longer the
finger pressure application time
required. | -10 to 80 | Cyano-
acrylate,
1 liquid | 2g x1
or
2g x5 | | KFG KC
KSP KSN (excl. E5)
KSPH KSPL | PC-12 | Cold setting. Suitable for strain measurement at middle to high temperatures. Product under export regulations | Apply pressure (30 to 50kPa) for 2 hours at normal temperatures. | -196 to 250 | Polyester,
2 liquids | 30
or
100 | | KFG KFGT KFR
KFRP KFP
KFH KFF KTB | EP-34B | Cold or hot setting.
Suitable for strain measurement
at middle to high temperatures
and for bonding gages to trans-
ducers used at room temperaure. | Apply pressure (30 to 50kPa) for 24 hours at 25°C or for 2 hours at 80°C. Pressing is possible with tape. | -55 to 200 | Epoxy,
2 liquids | 30
(main agent
5.6g x4 &
curing agent
2.1g x4) | | KFG KFR KFH
KFL KFN KFS | PC-6 | Hot setting. Suitable for strain measurement at middle to high temperatures and for bonding gages to transducers. | Apply pressure (150 to 300kPa) for 1 hour at 80°C, for 2 hours at 130°C and for 2 hours at 150°C. | -269 to 250 | Phenol,
1 liquid | 100 | | KFG (C20) KFW
KFWS KFF | EP-18 | Cold or hot setting.
Low viscosity makes it suitable
for bonding bolt tightening force
gages. | Apply pressure (50 to 100kPa) for 24 hours at normal temperatures or for 2 hours at 80°C. | -50 to 100 | Epoxy,
2 liquids | 30 | | KSN-2-E5 | EP-17 | Hot setting. Dedicated to KSN-2-E5. (Less cure shrinkage strain) | With the gage put on the adhesive, heat it for 2 hours at 130°C and for additional 2 hours at 150°C. | -50 to 170 | Epoxy,
1 liquid &
1 powder | 30 | | KFG KFR | PC-28 | Hot setting.
Suitable for aluminum alloy and
for bonding gages to
transducers. | Apply pressure (150 to 300kPa) for 1 hour at 100°C and for 2 hours at 160°C. | -20 to 80 | Phenol,
1 liquid | 60
(30g x2) | | KFU KFH | Pl-32 | Hot setting. Suitable for strain measurement at high temperatures. Product under export regulations | Apply pressure (200 to 500kPa) for 1 hour at 100°C and for 2 hours at 200°C. Then, with the pressure removed, heat it for 2 hours at operating temperatures. Or apply pressure (200 to 500kPa) for 1 hour at 100°C and for 5 hours at 160°C and with the pressure removed, heat it for 2 hours at operating temperatures. | -269 to 350 | Polyimide,
1 liquid | 20 | | KFL | UC-26 | Cold setting. Dedicated to KFL gages. (Mainly for concrete and lumber) | Apply pressure (30 to 50kPa) for 24 hours at normal temperatures. | –196 to 50 | Poly-
urethane,
2 liquids | 40 | | KFML KLM | EC-30 | Cold setting.
Mainly for ultrahigh-elongation
gages. | Apply pressure (30 to 50kPa) for 24 hours at normal temperatures. | 0 to 60 | Epoxy,
2 liquids | 30 | | Product under export regulations on strategic commodities as provided for in the Foreign Exchange Law and the | S-7 | Cure accelerator for CC-33A (shor | tens the curing time in cold enviror | nments) | | 30mL | | Foreign Trade Control Law. The neces-
sary legal procedures should therefore be
taken, including acquisition of an export
license from the Government of Japan, if
they are to be taken abroad. | S-9 | Surface treatment agent for instar polyethylene, etc. | ntaneous adhesives (improves adhe | | export regulations | 100mL | #### ■ Gage Bonding Tool Kit #### ● GTK-77 Tool Kit This kit includes all tools, gage terminals, solder and other expendables required for gage bonding work. #### Contents Tool box, screwdriver set, tweezers, nippers, radio pliers, tape measure (2m), stainless steel scale, protractor, sandpaper (#100), sandpaper (#320), soldering iron tip cleaner, knife, cutter, scriber, soldering iron (40W), compasses, roller, picker, marking pencil, mending tape, pencils (4H, 6H), scissors, cotton swabs, clean paper, high-temperature solder, flux for high-temperature solder, heat-resistant glass tube, gage terminals (T-P1, T-P4, T-P5, T-P6, T-P7, T-P8, T-P9,T-P10, T-F2, T-F3, T-F7, T-F8, T-F10, T-F13, T-F17, T-H11, T-R9), hair dryer (400W), AC plug, insulation vinyl tape, table tap (2.5m), soldering iron (ANTEX), silicon rubber (2m), fluoroplastic sheet (0.1mm) #### **■** Gage Pressers #### Gage Pressers G-MATE The G-MATE can apply pressure to a bonded strain gage continuously until the adhesive is cured. It consists of a frame equipped with a strong ferrite magnet to firmly fix the object under testing and a presser disk equipped with silicon sponge rubber and coil spring to apply constant pressure to the strain gage. #### Gage Picker G-PICKER | Name | Model | Application | | | |---------------------------------|----------|--|--|--| | Gage Mate | G-MATE-B | For normal temp.
(up to approx. 80°C) | | | | High-temperature Gage Mate | G-MATE-H | For high temp.
(up to approx. 180°C) | | | | Waterproof Gage Mate | G-MATE-W | For KFW and KFWS | | | | Reinforcing Steel Bar Gage Mate | G-MATE-R | For reinforcing steel bar | | | Sales unit: 6 pieces per pack Utilizing the adhesion of cellophane tape, the G-PICKER enables the user to freely pick up the strain gage by lightly applying the tip of the G-PICKER to the gage terminal, etc. Thus, it improves the efficiency of gage bonding work. #### **■**Compact Spot Welder #### GW-3C Compact Spot Welder Developed to mount encapsuled strain gages such as the KHCX, KHCS and KHCD and to fix high-temperature leadwires and thermocouples, the GW-3C is an easy-to-use welder providing an increased welding capability and allowing continuously variable settings of welding energy. (Patent pending) #### **Specifications** Welding Energy: LOW: 0 to 25Ws, continuously variable HIGH: 0 to 50Ws, continuously variable Welding Speed: 1Ws: 150 times/min., 5Ws: 120 times/min., 10Ws: 80 times/min., 20Ws: 60 times/min., 50Ws: 30 times/min. Power Requirements: 90 to 110 VAC, 50/60Hz: 500VA max. Dimensions and Mass: Dimensions and Mass: 183(W) x 153(H) x 313(D) mm (excluding protrusions), approx. 8.2kg (mainframe) Accessories: Square welding head, grounding clip (with 0.3m long cable), 2 electrodes (GW-02), metal file, fuse (5A), hexagonal wrench, instruction manual Option: Aluminum trunk (GW-01) 4 ### Gage terminals and other accessories #### **■ Gage Terminals** A gage terminal is applied to the connection between a strain gage and leadwire to protect the gage leads. It prevents the strain gage from receiving force and the gage leads from breaking or peeling off if the leadwire is pulled to some extent. | | Model | | Dimensions (mm) (W x L x t) | Base Material | Conductor
Material | Q'ty
per
Pack | Operating
Temperature
Range (°C) | Recom-
mended
Adhensive | Remarks | |-----------------|-----------|-------|--|---|------------------------|----------------------------------|--|-------------------------------|------------------------------------| | | | T-F2 | 5-pole 13 x 55 x 0.1
1-pole 13 x 11 x 0.1 | Glass epoxy | Copper foil | 20 sheets
(5 poles/
sheet) | -196 to 120 | CC-33A
EP-18 | | | | מ מ מ מ מ | T-F3 | 5-pole 13 x 65 x 0.1
1-pole 13 x 13 x 0.1 | Glass epoxy | 0 (" | 20 sheets | -196 to 120 | CC-33A
EP-18 | For 3-wire system | | | | T-F13 | 5-pole 13 x 65 x 0.15
1-pole 13 x 13 x 0.15 | Glass epoxy +
double-coated
adhesive tape | - Copper foil | (5 poles/
sheet) | -30 to 50 | Not
required | Self-bonding | | | | T-F7 | 5-pole 6 x 25 x 0.1
1-pole 6 x 5 x 0.1 | Glass epoxy | Copper foil | 20 sheets | -196 to 120 | CC-33A
EP-18 | Compact | | | | T-F17 | 5-pole 6 x 25 x 0.15
1-pole 6 x 5 x 0.15 | Glass epoxy +
double-coated
adhesive tape | 33,41 | (5 poles/
sheet) | -30 to 50 | Not
required | Self-bonding | | e | | T-F8 | 5-pole 4 x 30 x 0.1
1-pole 4 x 6 x 0.1 | Glass epoxy | Copper foil | 20 sheets
(5 poles/
sheet) | -196 to 120 | CC-33A
EP-18 | | | Foil type | | T-F10 | 15 x 50 x 0.1 | Glass epoxy | Copper foil | 10 sheets | -196 to 120 | CC-33A
EP-18 | Mainly for
5-element
gages | | | | T-F23 | 5-pole 14 x 55 x 0.1
1-pole 14 x 11 x 0.1 | | | | | CC-33A
EP-34B | | | | | T-F24 | 5-pole 9 x 40 x 0.1
1-pole 9 x 8 x 0.1 | Polyimide | Copper foil | 20 sheets
(5 poles/
sheet) | -196 to 200,
-196 to 120
with CC-33A | | For high temperature: compact | | | | T-F25 | 5-pole 6 x 25 x 0.1
1-pole 6 x 5 x 0.1 | | | | | | | | | | T-F26 | 5-pole 14 x 55 x 0.1
1-pole 14 x 11 x 0.1 | | | | | | | | | | T-F27 | 5-pole 9 x 40 x 0.1
1-pole 9 x 8 x 0.1 | Polyimide | Copper foil | 20 sheets
(5 poles/
sheet) | -196 to 350 | PI-32 | For high temperature | | | | T-F28 | 5-pole 6 x 25 x 0.1
1-pole 6 x 5 x 0.1 | | | | | | | | | | T-P1 | 14 x 10 x 4 | Styrene | Tin-plated | 20 pieces | -30 to 80 | CC-33A | | | | | T-P4 | 14 x 10 x 4.5 | Styrene +
double-coated
adhesive tape | copper wire | | -30 to 50 | Not
required | Self-bonding | | | = | T-P5 | 6 x 6 x 2 | ABS | Tin-plated | 00 piasas | -30 to 120 | CC-33A | Compact | | | <u></u> | T-P6 | 6 x 6 x 2.5 | ABS +
double-coated
adhesive tape | copper wire | 20 pieces | -30 to 50 | Not
required | Self-bonding | | Mold type | | T-P7 | 15 x 10 x 4 | ABS | Tin-plated | 20 pieces | -30 to 80 | CC-33A | For 3-wire system | | Molc | | T-P8 | 15 x 10 x 4.5 | ABS +
double-coated
adhesive tape | copper wire | 20 pieces | -30 to 50 | Not
required | Self-bonding | | | | T-P9 | 6 x 5 x 4 | Heat-resistant styrene | Tin-plated | 40 pieces | -30 to 90 | CC-33A | Compact | | | | T-P10 | 6 x 5 x 6 | Heat-resistant
styrene + rubber | copper wire | 10 pi0003 | 00 10 90 | 00 00/1 | Rubber on the rear | | | | T-R9 | 10 x 10 x 5 | Neoprene
rubber | Tin-plated copper wire | 20 pieces | -30 to 80 | CC-33A | For large
strain | | | | T-R10 | 15 x 30 x 6 | Neoprene
rubber | Tin-plated copper wire | 20 pieces | -10 to 80 | CC-33A | With lead contact preventing plate | | Welding
type | | T-H11 | 7 x 20 x 8 | Stainless steel + silicic acid glass | Kobar | 10 pieces | Room
temperature
to 300 | Welding | For high-
temperature
gage | #### **■ Coating Agents** #### Coating Agents Coating agents are applied to gages and gage terminals to prevent gages from adsorbing moisture in outdoor or long-term measurement. ○ : Excellent○ : Somewhat excellent△ : Somewhat inferior | / | Infanian | |---|----------| | ` | Inferior | | | | | X:Inferior | | | | | | |------------------------------|--|---|---|--|---|---|---|---| | Model | C-1B | C-4 | C-5 | AK-22 | VMTAP | ARALDITE-T,-C | HAMATITE-Y | KE-4898W | | Туре | Hot-melt type | Hot-melt type | Rubber solvent
type | Special clay | Press-fitting
rubber type | 2-liquid type (1:1) | Rubber solvent type | Silicon solvent
type | | Operating
Temp. Range | −30 to 40°C | –50 to 60°C | –269 to 60°C | –196 to 170°C | −30 to 80°C | −50 to 100°C | –20 to 70°C | −50 to 200°C | | Curing
Requirements | Heat-melted & cured at room temp. | Heat-melted & cured at room temp. | Melted & dried at room temp. 12 hrs. | Press-fitted | Press-fitted | 24 hours at room temp. | Melted & dried at room temp. 12 hrs. | Melted & dried at room temp. 12 hrs. | | Moisture/Water-
proofness | | 0 | 0 | 0 | \bigcirc | Δ | 0 | Δ | | Mechanical
Protection | Δ | Δ | Δ | Δ | \triangle | 0 | Δ | Δ | | Oil
Resistance | Δ | Δ | Δ | Δ | Δ | 0 | Δ | Δ | | Alcohol
Resistance | 0 | 0 | 0 | 0 | \circ | 0 | 0 | 0 | | Toluene
Resistance | × | × | × | × | × | 0 | × | × | | Alkalescent
Resistance | \circ | 0 | 0 | 0 | \circ | 0 | Δ | \triangle | | Weak-acid
Resistance | 0 | 0 | 0 | 0 | 0 | 0 | Δ | Δ | | Content | 500g | 500g | 100g | 500g | 38mm x 6m | T: 170g
C: 1.8kg | 1.5kg | 100g | | Material | Paraffin wax | Microcrystalline wax | Butyl rubber | Butyl rubber
+ inorganic additive | Butyl rubber | Ероху | Chloroprene
rubber | Silicon | | Color | White | White | Light yellow | Dark green | Black | Main agent: Light milk white
Curing agent: Light yellow | Black | Milk white | | Features | Can be applied
with a brush after
melting through
heating. Suitable
for underlayer of
multilayer coating. | Excellent cohesiveness makes it suitable for application to wall surface. | Minimal restriction
in ultra-low
temperature
applications. | The clay-like
shape ensures
easy coating
work.
Operating temp.
range is wide. | The tape shape faciliates coating work. | Highly effective
mechanial protec-
tion makes it
suitable for upper
layer of multilayer
coating. | Suitable for final finish of multi-layer coating. | Highly heat-
resistant coating
agent. | When using, read the attached Instruction Manual carefully. ### **■** Accessories for High-temperature Gages #### ● HTG Series Accessories for High-temperature Gages | Description | Model | Specifications | Q'ty | |----------------------------------|------------|--|----------------------| | High-temperature solder | HTG-S | Fusion temperature: 304 to 365°C
Maximum operating temperature: 350°C | 40cm long
bar x 2 | | Flux for high-temperature solder | HTG-S-F | Ingredients:
Inorganic acid + alcohol | 20mL | | Heat-resistant glass tube | HTG-G-TUBE | Inner diameter: 1.5mm
Length: 1m | 10 pieces | | Heat-resistant Teflon tape | HTG-T-TAPE | Heat resistance: 200°C
Width: 12.7mm | 32.9m long | | Heat-resistant glass tape | HTG-G-TAPE | Heat resistance: 350°C
Width: 25mm | 33m long | Note: The maximum operating temperature of 350°C for the high-temperature solder and the heat resistance of 350°C for the heat-resistant glass tape apply to a short-term operation.